ATP-sensitive K+ channel activation provides transient protection to the anoxic turtle brain.

نویسندگان

  • Marta Pék-Scott
  • Peter L Lutz
چکیده

There is wide speculation that ATP-sensitive K+(KATP) channels serve a protective function in the mammalian brain, being activated during periods of energy failure. The aim of the present study was to determine if KATP channels also have a protective role in the anoxia-tolerant turtle brain. After ouabain administration, rates of change in extracellular K+ were measured in the telencephalon of normoxic and anoxic turtles ( Trachemys scripta). The rate of K+ efflux was reduced by 50% within 1 h of anoxia and by 70% at 2 h of anoxia, and no further decrease was seen at 4 h of anoxia. The addition of the KATP channel blocker glibenclamide or 2,3-butanedione monoxime prevented the anoxia-induced decrease in K+ efflux during the first hour of anoxia, but the effect of these blockers was diminished at 2 h of anoxia and was not seen after 4 h of anoxia. This pattern of change in KATP channel blocker sensitivity can be related to a previously established temporary fall and subsequent recovery of tissue ATP during early anoxia. We suggest that activated KATP channels are involved in the downregulation of membrane ion permeability (channel arrest) during the initial energy crisis period but are switched off when the full anoxic state is established and tissue ATP levels have been restored. We also found that, in contrast to those in mammals, KATP channels are not a major route for K+ efflux in the energy-depleted turtle brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP-sensitive K1 channel activation provides transient protection to the anoxic turtle brain

Pék-Scott, Marta, and Peter L. Lutz. ATP-sensitive K1 channel activation provides transient protection to the anoxic turtle brain. Am. J. Physiol. 275 (Regulatory Integrative Comp. Physiol. 44): R2023–R2027, 1998.—There is wide speculation that ATP-sensitive K1 (KATP) channels serve a protective function in the mammalian brain, being activated during periods of energy failure. The aim of the pr...

متن کامل

Adenosine and ATP-sensitive potassium channels modulate dopamine release in the anoxic turtle (Trachemys scripta) striatum.

Excessive dopamine (DA) is known to cause hypoxic/ischemic damage to mammalian brain. The freshwater turtle Trachemys scripta, however, maintains basal striatal DA levels in anoxia. We investigated DA balance during early anoxia when energy status in the turtle brain is compromised. The roles of ATP-sensitive potassium (K(ATP)) channels and adenosine (AD) receptors were investigated as these fa...

متن کامل

Mitochondrial ATP-sensitive K+ channels regulate NMDAR activity in the cortex of the anoxic western painted turtle.

Hypoxic mammalian neurons undergo excitotoxic cell death, whereas painted turtle neurons survive prolonged anoxia without apparent injury. Anoxic survival is possibly mediated by a decrease in N-methyl-d-aspartate receptor (NMDAR) activity and maintenance of cellular calcium concentrations ([Ca(2+)](c)) within a narrow range during anoxia. In mammalian ischaemic models, activation of mitochondr...

متن کامل

Biophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane

Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...

متن کامل

Mechanisms for maintaining extracellular glutamate levels in the anoxic turtle striatum.

The turtle Trachemys scripta is one of a limited group of vertebrates that can withstand hours to days without oxygen. One facet of anoxic survival is the turtle's ability to maintain basal extracellular glutamate levels, whereas in most vertebrates, anoxia triggers massive excitotoxic glutamate release. We investigated glutamate release and reuptake in the anoxic turtle and the effects of aden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 275 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1998